

A Network Theory-Based Approach To Pricing Cyber Risk

Karthik Tumuluru Milliman Dubai, UAE karthik.tumuluru@milliman.com

Any views expressed in this document are those of the author and do not represent Milliman Inc.

Agenda

Introduction

Constructing a Model

- Network Theory The ABC's
- Organization Network Infrastructure
- Determining Spread of Attacks
- Impact of Corporate Social Networks
- Risk Scenarios

Using the Model for Pricing

- · Data Vulnerability and Value
- Business Interruption
- Insuring Specific Nodes and Sub-Networks
- Other Uses

Takeaways and Conclusions

Q&A

09 November 2021

Introduction

Cyber Risk – What, How and Why?

What?

Damaging a company's operations and/or reputation through its data and/or its IT infrastructure

Broad categories:

- Data breaches
- Business interruption
- System hijacking

How?

Social Engineering (like Phishing)

Ransomware

Password Theft

Malware (like Trojan viruses)

Eavesdropping

DDOS

SQL Injections

Man-In-The-Middle

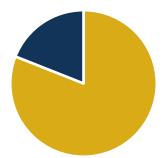
Accidental Node Failure

Why?

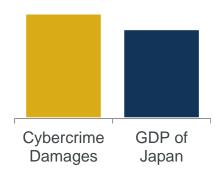
Money – Kaseya 2021 (Amateurs, Criminals, Many)

Espionage – Sony 2014 (Competitors, Governments)

Political/Personal


(Hacktivists, ex-employees)

Accidental – AWS 2017


(carelessness, mistakes)

Cyber Risk and the Insurance Market Today

2021 Munich Re
Global Cyber Risk
survey: only 19%
C-level respondents
feel adequately
protected

Estimated 2021 cybercrime damages: \$6 trillion

 Network security makes a growing portion of cyber losses, rising from <5% of incidents in 2017 to ~20% in 2021

- Attacks originating through phishing account for 4 out of 5 security incidents, with 94% of malware delivered by email
- Data privacy still makes up over 50% of incidents
- Market concentration increases vulnerability and repeat attacks (<u>Geer et al, 2020</u>)
- Global cyber insurance market size as of 2020 estimated at \$7.8B, with expected 21% CAGR through 2025

09 November 2021

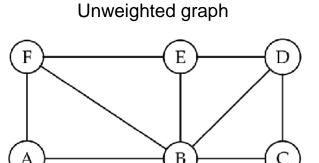
Current Cyber Insurance Pricing

- Risk factor-based underwriting with focus on industry revenue, employee and record count (<u>Gallagher</u>, 2021)
- Pricing strategies include: (<u>FTC (USA), 2019</u>)
 - Flat rate based on frequency-severity for different types of coverage
 - Base rate depending on company revenues
 - Qualitative/survey-based
- Qualitative cyber risk evaluation usually affected by misrepresentations (<u>UNIVPM, 2019</u>)
- Limited data availability among key challenges (<u>AAA, 2019</u>)
- Not understanding cyber exposure → customers see less value in cyber insurance (Geneva Association, 2018)
- The more quantifiable the exposure and loss, the better

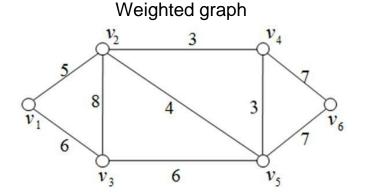
09 November 2021

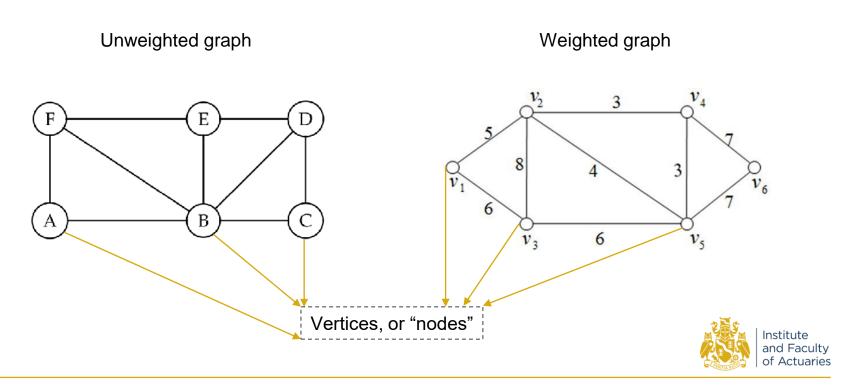
Scope of Presentation

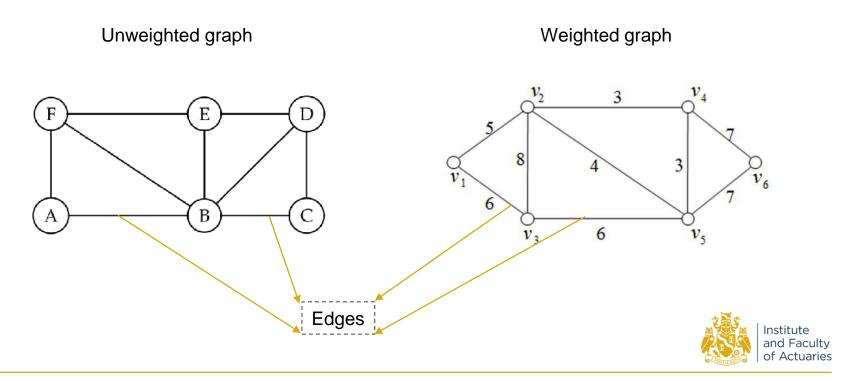
- Spread of risk based on IT network structure
- Broad risks data access, business interruption
- Binary approach risk either propagates or does not
 - Not considering partial impacts
 - Not considering specific attack types due to variety and complexity
- Not tackling reputational/legal risk
 - Definitions and ramifications may vary greatly by industry and company



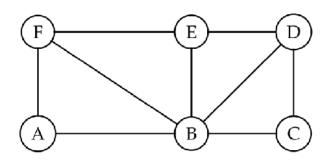
Review of Existing Research

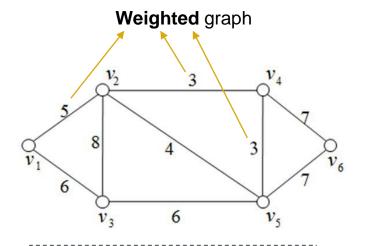

- Network theory has previously been applied in analyses of cyber-physical system vulnerability
 - Zhu, Milanović and Mihić (2019) identified node degree, node importance, betweenness and closeness centrality as key importance measures in vulnerability analysis
 - Zhu and Milanović (2017) used weighted adjacency matrices to analyse system interdependency and vulnerability
 - Guo, Yu et al (2019) constructed a stochastic cyber-physical power system model to investigate cascading failure
 - Fan et al (2020) defined 3 categories of damages: destruction of availability, integrity, and confidentiality of data
- Böhme and Schwartz (2010) presented an early framework on cyber-insurance
 - Five key components: supply side, demand side, info structure, organizational and network environments
 - Defines risk arrival and propagation
- Gil, Kott and Barabási (2014) applied a framework of genetic mutation impact on diseases, to ascertain associations between network services and cyber threats
- Shetty et al (2009) observed that the presence of competitive cyber-insurers may weaken incentives for users to improve their security

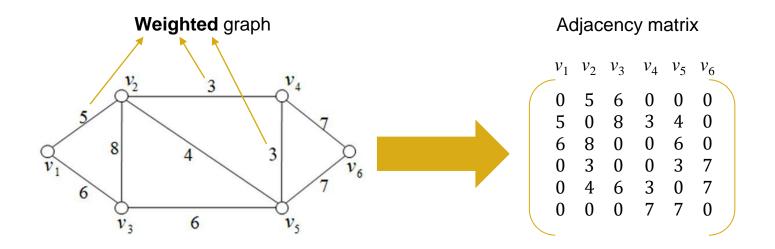

Study of how objects in a system are related



Source






Unweighted graph

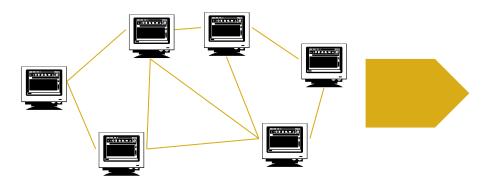
e.g. traveling salesman problem

e.g. v_1 is connected to v_2 with an edge weight of 5, so in the adjacency matrix, we populate elements [2nd row, 1st column] and [1st row, 2nd column] with 5

Concentration of a network

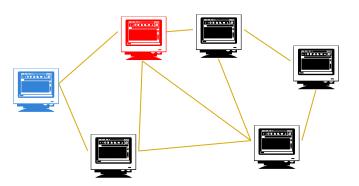
This network is **more concentrated** than this network Measure with the help of node centralities (e.g. betweenness: # paths that need to pass through a node)

Organization Network Infrastructure


- A set of interconnected workstations
 - Represented through weighted graph
 - Security protocol and strength

Organization Network Infrastructure

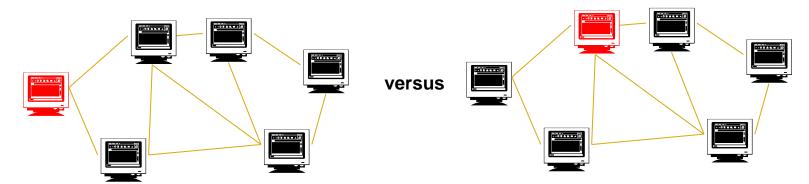
- Basis to understand movement of risk
 - Transition steps
 - Effect of network centrality on severity



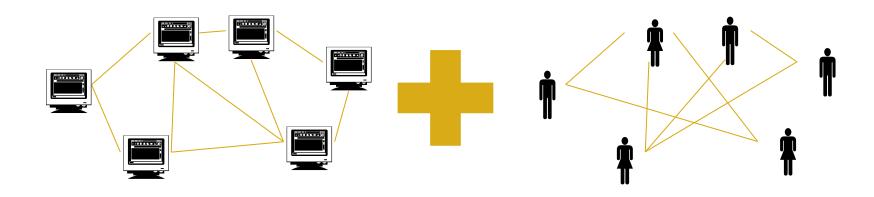
1	p_{12}	p_{13}	p_{14}	p ₁₅	p_{16}
p_{21}	1	p_{23}	p_{24}	p_{25}	p_{26}
p_{31}	p_{32}	1	p_{34}	p_{35}	p_{36}
p_{41}	p_{42}	p_{43}	1	p_{45}	p_{46}
p_{51}	p_{52}	p_{53}	p_{54}	1	p_{56}
p_{61}	p_{62}	p ₆₃	p_{64}	p ₆₅	1

Probability Calculation

- Measuring the probability that the attack transfers from node 1 (blue) to node
 2 (red) would need to consider the nodes' connectivity
 - Mean-field approximation on very large networks in epidemic models (e.g. ε-SIS, Pastor-Satorras and Vespignani, n-Intertwined)


p ₁₂ , or P(1 infects 2 1 is infected)		
=	P(1 infects 2) / P(1 infects adjacent node)	
=	F(Closeness _{1,2} , Importance ₂) / F(Degree ₁ , Importance ₁)	

- Akin to SIS model
 - Still possible to get infected again


Determining Spread of Attacks

- Patient zero
 - Internal vs external (how would behaviour change?)
- Path of least resistance?

Impact of Corporate Social Networks

Impact of Corporate Social Networks

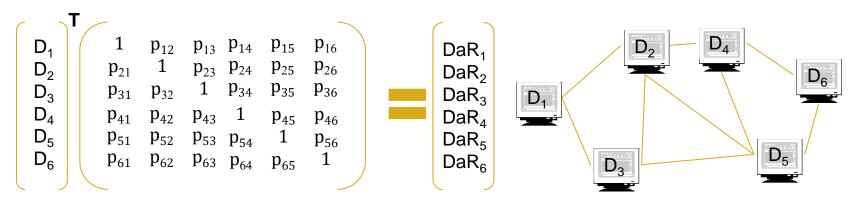
- Social network analysis
 - Organisational structure
 - Social engineering
 - Privacy concerns
- Internal attacks
 - Modelling behavioural element
- Using a "fire drill" to gauge susceptibility
 - Needs familiarity and expertise, but pros outweigh cons

Risk Scenarios

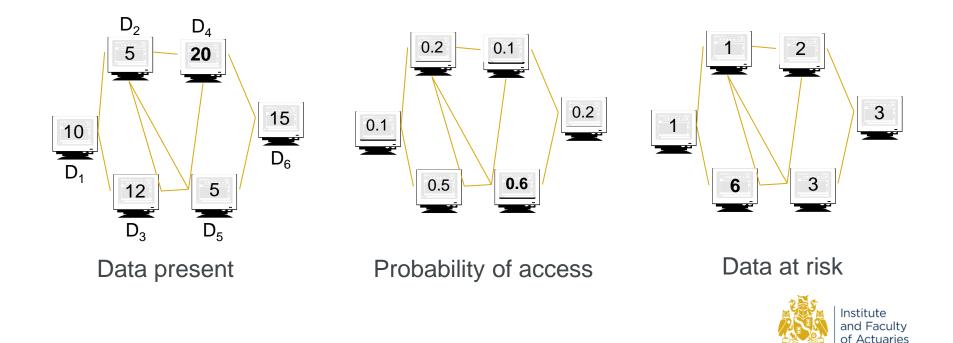
- Define objective
 - Motivation in internal attack scenarios.
- Select various origins of breach for each scenario
- Consider different network cyberattack strategies
 - Attack sophistication (online presence of company?)
 - How would people respond to the attack?
 - How would the firm as a whole respond? How fast can it respond?
 - Complexity of existing security protocols
- Monitor risk levels using defined metrics
 - Zhu (2019) defines 2 methods to measure cyberattack success on firewall:
 - Rejected Attempts/Total Traffic
 - Malicious Packets/Total Packets bypassing firewall for a given rule

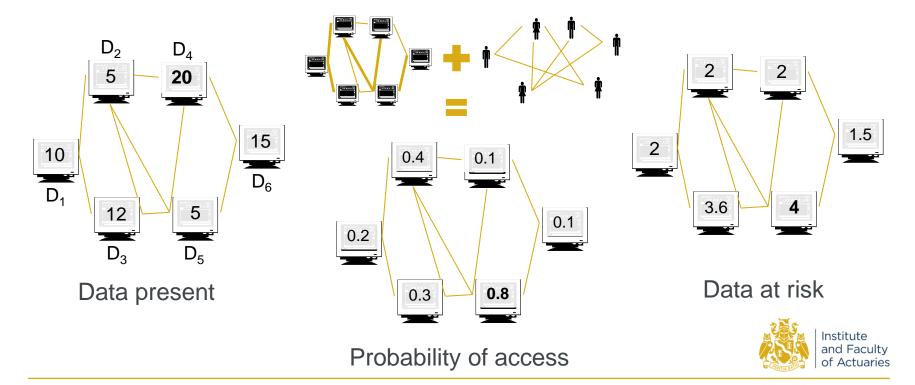
09 November 2021 22

Institute

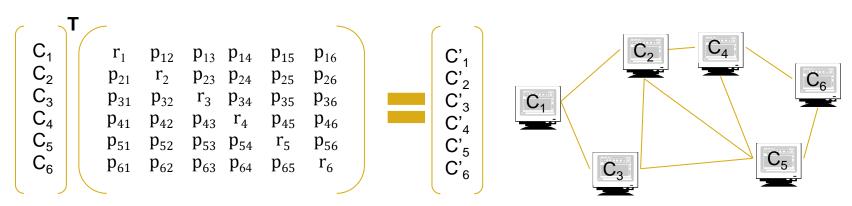

and Faculty

Data Vulnerability and Value


- Metric: Total data-at-risk (based on probability of risk transfer, p_{ii})
- For a single-step transition, if each workstation i has volume of data D_i , then


- How does total risk evolve over policy duration?
 - Contingent on centrality of network
- Price based on threshold? Data point?

Data Vulnerability – Example



Data Vulnerability – Example 2

Business Interruption

- Metric: Expected downtime (capacity below threshold & recoverability)
- Capacity of workstation or center (how fast can each workstation recover?)

- Set thresholds to determine proper functioning, e.g. C > 90%
- Number of workstations overloaded → use to determine downtime

- E.g. DDOS

Business Interruption - Example

Threshold of 90%

Network at t = 5

Network at t = 6

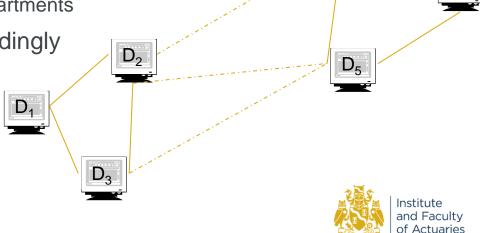
Network at t = 7

 Between t = 5 and t = 7, station 3 has an expected downtime of 1 while station 1 has an expected downtime of 2

Insuring Specific Nodes and Sub-Networks

Certain nodes may be more important, so more targeted

• E.g. data centres, workstations of members with public exposure


Some sub-networks may be more isolated than others

• Geographic dispersion, specific departments

Need to adjust edge weights accordingly

Determine risk entry points

Origin from obscure network node

Other Uses

- Cyber risk capital allocation based on attack scenario results
 - Determine VaR/CTE based on worst impacts
- Identification of own weak points
 - Turning descriptive into prescriptive analysis
 - Costs vs benefits of different network architecture (<u>ASTIN</u>, <u>2018</u>)
 - Addressing silent cyber as a result
 - Antifragility e.g. Chaos Monkey

Takeaways and Conclusions

- Network theory presents a way to look at cyber risk on a highly granular level
- Subcategories of risks modelled through same framework
 - Data
 - Interruption
- Propagation of risk across a system can be modeled with dynamic scenarios

Considerations

- Evolution of risk with work-from-home environments
- A → B may not be same as B → A
 - Directed graphs?
 - Workstations with and without certain permissions?
- Moral hazard
- Continuous time modelling
- Blockchain
- Benchmarks for smaller companies (SMEs)
 - Insurability based on size
 - Third-party/IT service usage

Further Information for Interest

- Literature
 - Network attack detection (MIT, 2019)
 - Cybersecurity incident prediction through mandatory disclosure regulation (<u>Berkeley</u>, 2020)
 - Understanding human decisions in cybersecurity
 (Carnegie Mellon, 2014)

Data

- USB-IDS Public intrusion detection dataset for more complex analysis of cybersecurity attacks
- VizSec Comprehensive list of open-source datasets pertaining to cybersecurity
- TowerStreet Data containing 37,500 unique breach incidents
- Privacy Rights Clearinghouse –
 Chronology of recent data
 breaches with details

of Actuaries

Questions

Comments

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].

