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In the context of increasing operational complexity within the calculation chain, 

e.g., related to balance sheet calculation and financial reporting, it has become 

critical to assess efficiently the sensitivity of the output results to individual 

assumptions and inputs involved. 
 

The purpose of this paper is to provide the methodological 

basis of sensitivity analysis and to demonstrate an example of 

the differentiated behaviour of Sobol and Shapley indices, as 

well as the performance of the Quasi-Monte Carlo (QMC) 

estimator in that context. 

Introduction 
Who has never confused two figures when copying a number? 

Who has never entered an overdrawn number by typing the 

wrong key on his keyboard? Who has never added the wrong 

attachment when sending an email or made a mistake when 

importing data? These situations are all familiar to us daily. Of 

course, today, a large part of these processes is automated, 

and in this context it can be even more challenging to detect 

potential errors.  

Whether or not we are aware of errors, they are a risk that we 

must take into consideration and that we qualify as operational 

errors. Furthermore, it is possible to be aware of some errors, 

but how to be sure they have all been found? This paper 

details methods for knowing in advance the assumptions that 

will have the greatest impact on the final model outcome and 

thus to know what to prioritise in checking.  

Model risk management 
Before describing the different fields of model risk 

management, we need to give a definition of a model and 

explain what model risk is. A model is a process that links one 

or more input variables to one or more output variables. 

Mathematically or algorithmically, this process is called a 

function. This function may itself depend on several other 

functions in the case of a more or less complex model. 

Nowadays, insurers are developing increasingly complex 

models in order to represent their business and their risks as 

realistically as possible. Thus, they rely on production lines that 

combine different models and types of data.  

Model risk is the uncertainty in the output variables of the 

model due to various upstream flaws. The role of model risk 

management is to identify, quantify and resolve potential 

defects throughout the production chain. Flaws can be divided 

into four fields: 

 Data quality: The uncertainty in the input variables of the 

model. The error contained in each variable may come 

from an incorrect entry or can be the result of a flaw in 

another model. Uncertainty also resides in whether or not 

the data itself shows an underlying bias or the 

assumptions of the chosen model have been fulfilled. 

 Model’s suitability: The uncertainty contained in the 

model. It may be a lack of theoretical consistency, a 

mismatch with the reality or even more a mistake in 

implementation of the model. 

 Model’s instability: Here, we try to determine whether the 

model is not oversensitive to certain predefined assumptions. 

 Model’s interpretation: In this field, we consider the error 

caused by a misinterpretation or a misuse of the results. It 

is also the understanding of the interaction and impact of 

all the variables in the model on the output. 

How can sensitivity analysis address 

model risk management? 
In this paper, we study the impact of the structuring assumptions 

of a given model. The main purpose is to determine which 

parameters have the most influence on our output variable. This 

is the result of several findings. Increasingly large production 

lines imply longer processes with increasing computational 

times, from a few hours to even several days. Another point of 

attention is the fact that we are faced with a race for the best 

possible modelling. In this context, it is important to understand 

well what is at stake for each of the model’s structuring 

assumptions and to determine the input variables that will have 

the greatest impact on the output. 
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Through sensitivity analysis, we can address the issue at 

stake. Indeed, sensitivity analysis can be seen as the study 

that seeks to determine how the uncertainty in the output 

variable can be distributed among the different sources of 

uncertainty in the input variables. Therefore, the idea is to 

measure the variability inherent to the output variable subject to 

the variation of each input variable. 

Sensitivity analysis can address each component of model  

risk management:  

 Data quality: Sensitivity analysis allows us to exhibit the 

most material input. Therefore, it orientates on those 

inputs that have to be free of material errors to avoid any 

major impact. 

 Model’s suitability: Through the understanding of the 

sensitivity indices, as we describe later, the modeller is 

informed about the key variables that are retained in the 

modelling exercise. 

 Model’s instability: By nature, sensitivity analysis 

provides the measure of the degree of response of the 

model to a change of any assumption. 

 Model’s interpretation: Sensitivity analysis involves the 

use of indices, e.g., Shapley, that are in fact widespread in 

the field of model interpretability (see Delcaillau et al., 2021). 

In order to use sensitivity analysis to put the “black box” models 

behind us, it is necessary to be able to simulate the model a 

large number of times or alternatively to rely on approximate 

closed forms. In the following, we first present the Sobol and 

Shapley indices, then detail two methods of sensitivity analysis 

based on each strategy (simulations vs. closed forms). 

A deep dive into sensitivity analysis 
Among the range of sensitivity analysis methods, we were 

interested in methods based on variance decomposition. We 

describe below two well-known indices in sensitivity analysis: 

Sobol and Shapley. 

 Sobol indices were introduced in 1993. The first-order 

Sobol index measure the share of variability of the model 

output as a function of the variability of an input variable. 

We denote by 𝑋 = (𝑋1, ⋯ , 𝑋𝑛) ∈  ℝ
𝑛 the random vector 

which represents the set of input variables and by 𝑌 =

𝑓(𝑋) the model output. Under these notations, the first-

order Sobol index of the input variable 𝑋𝑖 is given by: 

𝑆𝑖 =
𝑉𝑎𝑟[𝔼[𝑌|𝑋𝑖]]

𝑉𝑎𝑟[𝑌]
. 

In other words, the index represents the share of uncertainty 

due to input 𝑋𝑖, because 𝔼[𝑌|𝑋𝑖] corresponds to the most 

plausible value of the output, given outcome 𝑋𝑖 .  

 Shapley indices were defined in 1953 in the field of 

cooperative game theory. They have multiple uses 

nowadays. In actuarial science, for example, they can be 

used for capital allocation purposes. In data science, the 

Shapley Additive Explanations (SHAP) package provides 

insights related to model interpretability. Concerning 

sensitivity analysis, it is Owen in 2014 who uses them first. 

If we consider the same assumptions as above and denote 

by −{𝑖} the set of elements of {1,⋯ , 𝑛} not containing 𝑖, 

then the Shapley index of an input variable 𝑋𝑖 is defined as  

𝑆ℎ𝑖 =
1

𝑛
∑ [

𝑉𝑎𝑟 [𝔼[𝑌|𝑋𝑆∪{𝑖]]]

𝑉𝑎𝑟[𝑌]
−
𝑉𝑎𝑟[𝔼[𝑌|𝑋𝑆]]

𝑉𝑎𝑟[𝑌]
]

𝑆 ⊆ −{𝒊]

. 

where 𝑋𝑆 denotes the information {𝑋𝑘 , 𝑘 ∈ 𝑆} for any set 𝑆.  

In other words, the index represents the average 

uncertainty share of model 𝑌 = 𝑓(𝑋) associated with the 

additional knowledge of 𝑋𝑖. 

In a general framework, these two sensitivity indices do not 

give the same values. However, in the very simplified case 

where the function is linear and the input variables are 

assumed independent, then both indices are equal. This 

property does not hold when the function moves away from 

linearity, as is usually the case in practice. Examples include 

cash flow model response to asset and liability assumptions, 

economic scenario generator response to economic variables 

and parameters or the calculations involved in reporting, such 

as risk aggregation to calculate Solvency Capital Requirement 

(SCR) under Solvency II.  

When the input variables are dependent, Sobol and Shapley 

indices differ and the basic interpretation of Sobol indices as 

percentages of sensitivity (summation of all indices to 1) is lost 

while Shapley indices allow us to preserve this property. 

Indeed, the sum of Sobol indices is only equal to 1 when the 

input variables are independent whereas the sum of Shapley 

indices is always equal to 1, whether the input variables are 

dependent or not. 

In a general context, we will therefore tend to favour the use of 

the Shapley over the Sobol index, because the former provides 

the relevant interpretation related to sensitivity to input 

parameters and data, even if input variables are assumed to be 

dependent. In the context of sensitivity analysis, correlation is a 

modelling feature that can be used to more properly reflect 

interactions between errors in inputs. Indeed, in practice, it is 

known that errors may occur simultaneously due to a common 

source or cause (for example, in the case where the input values 

depend on common user actions or when an operational error 

impacts a common set of inputs). In particular, positive 

dependence can be used to model the fact that the cause leads 

to a simultaneous increase or decrease of the inputs. In the 

following part, we will study the different estimators of Sobol and 

Shapley indices via a numerical example, while highlighting the 

impact of dependence on the analysis. 
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Estimators for sensitivity indices 
The purpose is to introduce estimators of the indices presented 

in the last part. Two approaches will be presented. 

SIMULATION APPROACHES 

The first approach is based on simulations. As its name 

suggests, we will estimate the sensitivity indices with a method 

based on Monte Carlo simulations. 

 Sobol index estimation: Here, we start from the 

mathematical definition of the Sobol index to derive the 

estimator. The estimation is performed in two steps, one 

for the variance and the other for the variance of the 

conditional expectation: 

Step 1: Estimation of 𝑉𝑎𝑟[𝑌]: 

𝑉𝑎�̂�[𝑌] =
1

𝑁 − 1
∑[𝑌𝑘 −(

1

𝑁
∑𝑌𝑗

𝑁

𝑗=1

)]

2

.

𝑁

𝑘=1

 

Step 2: Estimation of 𝑉𝑎𝑟[𝔼[𝑌|𝑋𝑖]] = 𝔼[(𝔼[𝑌|𝑋𝑖] − 𝔼[𝑌])
2]: 

𝑉𝑎�̂�[𝔼[𝑌|𝑋𝑖]] =
1

𝑁 − 1
∑[�̂�[𝑌|𝑋𝑖 = 𝑥𝑖𝑘] − (

1

𝑁
∑𝑌𝑗

𝑁

𝑗=1

)]

2
𝑁

𝑘=1

, 

where �̂�[𝑌|𝑋𝑖 = 𝑥𝑖𝑘] is estimated by Monte Carlo (with M 

simulations). This relies on the ability to simulate the 

distribution of the vector (𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, …𝑋𝑛), which can 

be achieved using Gaussian conditioning formulas (see 

Tondolo [2019]).  

However, this simulation approach remains 

computationally intensive, because N x M vectors of n 

random variables have to be simulated, with 𝑁 outer 

scenarios called primary simulations and 𝑀 inner 

simulations called secondary simulations.  

Some attempts to accelerate this estimation in the context of 

linear functions have been proposed in the literature, see, 

e.g., Kucherenko et al. (2012). By rewriting the Sobol index, 

they proposed a formula involving a single Monte Carlo loop 

that allows us to avoid the nested nature of the estimator. 

However, for each simulation, it is required to simulate two 

independent copies of the random vector of input variables. 

Our work has led us to conclude that this will ultimately 

result in increased computing time for nonlinear functions 

due to a lower convergence in this context. 

 Shapley index estimation: In order to estimate the 

Shapley indices, one possible option would be to proceed 

as before. However, in that case, the estimator would not 

converge in a polynomial time. Instead, we can consider a 

method introduced by Song et al. (2016), which is based 

on the reformulation of the Shapley index calculation by 

considering all the permutations of the input variables. 

Once again, if we consider all the 𝑛! permutations, in the 

context of a large dimension, it becomes impossible to 

estimate the indices. This is why Song et al. (2016) 

propose an improvement to reduce the cost of calculation. 

This is performed by generating only a limited set of 

permutations and arranging the order of the calculations to 

obtain an estimator with faster convergence. The 

Shapley’s indices estimation algorithm that accelerates 

calculations and converges in polynomial time is detailed 

in Tondolo (2019). 

CLOSED-FORM APPROACHES 

The so-called closed-form approach presented below is based 

on an approximation of the variance known as the Delta method. 

The virtue of such an approach is that it avoids performing 

intensive simulations to estimate the sensitivity indices. 

Within the general framework of the previous notations and 

considering a smooth function 𝑓, we are able to express 𝑉𝑎𝑟[𝑌] 

as a function of 𝜇 = (𝔼[𝑋1],⋯ , 𝔼[𝑋𝑛]) and ∑ the variance-

covariance matrix of 𝑋. The Delta method gives us the 

following approximation: 

𝑉𝑎𝑟[𝑌] = 𝑉𝑎𝑟[𝑓(𝑋)] ≈ ∇𝑓(𝜇)𝑡 ∑ ∇𝑓(𝜇), 

where the gradient of the function 𝑓 is expressed as: 

∇𝑓(𝑥1, ⋯ , 𝑥𝑛) = (
𝜕𝑓

𝜕𝑥1
, ⋯ ,

𝜕𝑓

𝜕𝑥𝑛
). 

In the case where 𝑋 is one-dimensional, we obtain the 

following based on the representation 𝑋 = 𝜇 + 𝜎𝑍 and using an 

expansion in the volatility parameter: 

𝑉𝑎𝑟[𝑌] = 𝑉𝑎𝑟[𝑓(𝑋)] 

≈ 𝑉𝑎𝑟[𝑓(𝜇) + 𝜎𝑍𝑓′(𝜇)] 

= 𝜎2(𝑓′(𝜇))
2
. 

The Delta method also allows us to derive an approximation of 

the variance of the conditional expectation 𝑉𝑎𝑟(𝔼[ 𝑓(𝑋) ∣∣ 𝑋𝑖 ]). 

Indeed, we can use this second-order approximation to first 

demonstrate the following approximation: 

𝑉𝑎𝑟[𝔼[𝑓(𝑿)|𝑋𝑖]] ≈ 𝑉𝑎𝑟[𝑓𝑖(𝑋𝑖)], 

where 𝑓𝑖 corresponds to the function 𝑓 taken as the vector of 

conditional expectation with respect to the input variable 𝑋𝑖. 

Furthermore, conditional expectation being a function of the 

conditioned variable, 𝑓𝑖 is a function of the single variable 𝑋𝑖. 

The one-dimensional approximation of the Delta method leads 

us to the following approximation: 

𝑉𝑎𝑟[𝔼[𝑓(𝑋)|𝑋𝑖]] ≈ 𝜎𝑖
2[𝑓𝑖

′(𝜇𝑖)]
2. 

Thus, we have a closed-form formula for the Sobol index by 

considering the ratio of the approximations. 

Remark: Because Shapley indices can be seen as a sum  

of differences between two Sobol indices, it is possible to  

use the above approximation, but this requires computing a 

large number of approximations, which becomes complex in 

large dimensions. 
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The table in Figure 1 provides a summary of when to use one approach or the other, depending on our constraints. 

FIGURE 1: COMPARISON OF APPROACHES 

 

Before moving on to numerical applications and comparisons, 

let us look at one last theoretical point. This concerns the way 

to simulate random numbers for Monte Carlo estimators. 

Generation of random numbers 
We have seen that we estimate the sensitivity coefficients 

using a Monte Carlo (MC) method. Here, we will discuss how 

to reduce the estimation error of this approximation by 

modifying the generation of random numbers.  

Commonly, when we talk about the Monte Carlo (MC) method, 

we imply a simulation of random numbers with the uniform law 

on [0, 1] that we call pseudo-random. In this case, we know 

that the estimation error is 𝑂 (
1

√𝑁
), where 𝑁 represents the 

number of simulations. Thus, we must generate a large number 

of simulations to obtain an estimator of quality. In many cases, 

a unique call to the function 𝑓 can last several hours, which 

prevents the generation of many random paths. Consequently, 

the Monte Carlo estimation will suffer from a large estimation 

error. One way to reduce the estimation error by keeping the 

number of simulations 𝑁 constant is to make sure that we 

cover the interval [0, 1] as “best” as possible, as described in 

the following. Therefore, we turn to another method of random 

number generation. 

The second method is based on low-discrepancy sequences. 

The low-discrepancy sequences are built more to minimise 

discrepancy than to construct more evenly generated 

sequences. We denote them by quasi-randomly generated 

random numbers and the underlying method of estimation is 

called Quasi-Monte Carlo (QMC). Several low-discrepancy 

sequences exist. In the sequel, we will use a popular one often 

applied in practice in finance, which is the Sobol sequence. In 

his article, Sobol (1967) provides a theorem that ensures a 

lower estimation error by using quasi-random number 

generation with the Sobol sequence rather than using a 

pseudo-random method with a uniform law. However, one 

should be cautious as the Sobol sequence is known to be very 

efficient for small dimensions, but it decreases in quality when 

the dimension increases. 

Let us now look at a graphical comparison between the two 

methods of random number generation mentioned above. In 

Figure 2, we have represented the generation of the 10,000 

points of the Sobol sequence in dimension 2. In Figure 3, the 

generation is done using the uniform law. 

FIGURE 2: QUASI-RANDOM GENERATION: SOBOL’S SEQUENCE 

 

FIGURE 3: PSEUDO-RANDOM GENERATION: UNIFORM LAW 
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We note that the quality of the distribution is not satisfactory 

when the numbers are generated pseudo-randomly (Figure 3). 

Indeed, we observe some areas containing many points while 

others are completely empty. Conversely, if we focus on those 

generated quasi-randomly with the Sobol sequence (Figure 2), 

they seem very well distributed on the interval [0, 1]. 

We will thus use quasi-random number generation for our 

following numerical applications. 

Case study 
We will now focus on numerical results and graphical 

comparisons to compare the different sensitivity indices and 

their estimators.  

In terms of methodology, we must first define the law of the 

random vector of the input variable and its structure of 

dependency. In our case, we consider it to be a Gaussian vector. 

In a second step, we have to simulate a large number of random 

vectors with the previous setting. The sensitivity coefficients are 

then obtained using the estimators presented above. 

As a first step, let us look at a numerical comparison of random 

number generation methods for the linear function: 

𝑓(𝑋1, … , 𝑋𝑛) =  𝑋1 +⋯+ 𝑋𝑛.      (1) 

As a reference of comparison, we have considered the exact 

value obtained by closed-form approach. 

FIGURE 4: MONTE CARLO VS. QUASI-MONTE CARLO 

 

The graph in Figure 4 confirms what we found concerning the 

comparison on the quality of the distribution between the MC 

and QMC methods. The two methods seem to converge 

towards the exact value of the Sobol index. However, we note 

that the method with pseudo-random generation (black curve) 

fluctuates even with many simulations and slightly 

overestimates the Sobol index of 𝑋1. On the other hand, the 

QMC method seems to oscillate in a reduced range around the 

exact value. This is true for a not too high number of 

simulations, which saves computing time in order to have good 

precision. Due to the good properties of the QMC random 

sequence, we consider this setting in the following application. 

Let us now consider the Solvency II risk aggregation formula: 

𝑓(𝑋1, … , 𝑋𝑛) =  √ ∑ 𝜌𝑖,𝑗
1≤𝑖,𝑗≤𝑛

. 𝑋𝑖  . 𝑋𝑗  ,      (2) 

where 𝜌𝑖,𝑗 is the correlation coefficient allowing the aggregation 

of economic capitals for the set of 𝑛 risks. 

For the numerical application, we will set the values below for 

the reference market, default, life, non-life and health SCRs. 

𝜇 =

(

  
 

𝑆𝐶𝑅𝑀𝑎𝑟𝑘𝑒𝑡
𝑆𝐶𝑅𝐷𝑒𝑓𝑎𝑢𝑙𝑡
𝑆𝐶𝑅𝐿𝑖𝑓𝑒

𝑆𝐶𝑅𝑁𝑜𝑛−𝐿𝑖𝑓𝑒
𝑆𝐶𝑅𝐻𝑒𝑎𝑙𝑡ℎ )

  
 
=

(

 
 

35
14
27
21
3 )

 
 

 .      (3) 

For Sobol indices, we used 1,000 primary (𝑁) and 1,000 

secondary (𝑀) simulations. In order to consider the same 

number of points generated for Shapley’s indices, we used the 

𝑛! = 120 permutations of the five input variables as well as 100 

primary and secondary simulations. The case of dependency 

includes a 50% correlation for health and life SCRs and health 

and non-life SCRs. This is to illustrate that, due to the similarity 

in the way calculations are produced for those risks (tools, 

underlying data, methods etc.), it is likely that some errors may 

be common to the health and life/non-life values. Results are 

presented with a confidence interval obtained by a 

nonparametric bootstrap method. Confidence intervals are 

calculated on 𝐵 = 1000 simulations and at the level of 

confidence 𝛼 = 95%. The results are depicted in Figure 5. 

FIGURE 5: PSEUDO-RANDOM GENERATION: UNIFORM LAW 

 

In a first step, we illustrate on the toy independent case the 

main theoretical properties that have been previously 

described. In our example, we indeed observe that in the 

independent case between the input variables (SCR per risk), 

the ordering between the risks in terms of Sobol or Shapley 

index is preserved compared to the values of the SCRs 

themselves; see values (3) above. As expected, in this case 

the values of the Sobol and Shapley indices differ, although the 

difference appears negligible, which can be due to the fact that 

the function (2) is in practice not “too far” from linearity (1). 

From an interpretation standpoint, both indices then quantify 

the percentage of variance explained by each input SCR; as an 

example, the market SCR represents 35% of the total sum of 

SCR per risk but explains 60% of the diversified SCR variation.  
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We now turn to the main example in this study that considers 

dependence between input variables, interpreted as potential 

common underlying errors in the calculation chain to produce 

those inputs. In this setting, we see that the difference between 

Sobol and Shapley indices increases. As already discussed, 

Sobol indices do not add up to 1, therefore they can no longer 

be interpreted conveniently as percentages, making particularly 

challenging any comparison with the independent case. 

Looking at Shapley indices for which the interpretation in terms 

of percentage of impact on overall uncertainty is relevant, it 

appears that the ranking is changed. Indeed, although the 

overall contribution of life, non-life and health SCRs input 

remains roughly stable between the independent and 

dependent configurations, the dependent case shows a strong 

increase in the Shapley index for the health SCR input. In 

terms of value, the health SCR is negligible (3% of total SCR 

values). However, when dependence is introduced, any 

variation (interpreted as an error) in health SCR calculation is 

likely to lead to a simultaneous error in the life or non-life SCR 

calculations, leading in turn to a share in overall variation of 

10%. This provides evidence of how even negligible inputs in 

terms of value can in fact represent a reasonable share of 

impact on the output, when dependencies are in play. This also 

shows how sensitivity testing with dependence can allow us to 

identify the critical inputs in the calculation process, going 

beyond classical materiality arguments. 

Such an approach has the potential for a significant range of 

applications, including as examples balance sheet valuation, 

Standard Formula and Internal Models processes within 

Solvency II, International Financial Reporting Standard (IFRS) 17 

and financial reporting in general. This approach could also be 

included directly within tools and software that make up those 

calculation chains, as well as within any risk management 

procedure for a better monitoring of model risk and its 

components, from data quality to model stability, suitability  

and interpretation.  
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